南投縣政府 108 年度研究報告

遙感探測

——南投縣竹山鎮綠覆率

(以 2018 年為例)

研究人

服務單位: 南投縣竹山地政事務所

研究人員:張家維

中華民國 108 年 1 月 20 日

南投縣政府 108 年度研究報告摘要表	
研究報告名稱	遙感探測—南投縣竹山鎮綠覆率
研究單位及人員	南投縣竹山地政事務所 測量員 張家維
研究起迄年月	107年1月起至108年1月
研究緣起與目的	在資訊導向的時代,各項領域都逐漸走向數值化的 大數據分析,一方面可以輕鬆展現出目前的狀況,另一 方面更可以歸納出原由、問題和走向,以利制定各種計 畫。對我們測量而言,各項新興軟體如ARCMAP、QGIS2 等,將使我們資訊呈現分析更為透徹直觀。 本研究使用ARCGIS軟體配合衛星影像圖層進行分 析,用簡易圖表和數據結論方式呈現,以南投縣竹山鎮 綠覆率為主題,冀能得出其實際現狀,利於各項計畫參 考,甚是更進一步作為歷年地貌變化的參考指標,作為
研究方法與過程	最即時準確地來源資料。 一、資料蒐集 二、地理資訊系統應用(ARCGIS 應用) 三、資料分析
研究發現與展望	本研究使用 USGS 開放資料近紅外光波段的衛星影像「Landsat 8 衛星影像」作為本次 NDVI 分析的對象,以 ARCGIS 為主,得出現在的情況,再用不同面相展現切入問題。另外,受限於資料樣本和精度影響,和預先期望也些許落差,因此,若能獲得更多面向、來源、更高解析度的圖資,將更多不同的空間資料配合大數據屬性資料疊合篩選,定能得出更準確更優良的長期整合成果。
選擇獎勵	□行政獎勵 ■獎勵金

目 錄

壹、	前言3
貳、	研究方法與資料分析4
參、	研究結果9
肆、	結果及未來展望10
伍、	參考文獻11

壹、 前言

1.1 研究背景及動機

921 大地震過後,南投山區林地變化甚大,地震的重創摧殘,山坡地土石崩塌,房屋及國小等公共建設倒塌造成損失,建築物全倒、半倒不盡其數,聯外道路更是柔腸寸斷,風景區內大自然美景變成滿目瘡痍,山丘坡地土石崩塌等,使不少然原有資料與實地落差甚大,且有大量資料也因此次地震遺失,竹山也為其中受影響地區之一。

近年來,竹山鎮市區建案開發有所顯著上升,山區買賣開墾也日益漸多,原有植林木面積勢必有所增減,測量業務也隨而增加,然市地山區調查實際植木林地實在費時費工,效益不彰,測量業務上也有所窒礙,因此想藉由本次遙測報告有利用 Landsat 8 衛星影像,研究竹山鎮整體 NDVI 及綠覆率的數值,進而得出目前綠地實際狀況。

1.2 研究目的:

一、分析未來竹山鎮的發展趨勢

透過衛星影像圖,計算出竹山鎮的綠覆率,預計希望分析 NDVI 值作為綠覆率的指標,來檢視整體綠覆率是否符合該區應有使用劃分特質,以分析未來的發展及開發趨勢,並給予大坑在未來的發展初步建議。

二、瞭解風景環境是否受到重大政策或災害的影響

利用綠覆率的數值指標可檢視風景區的環境,是否受到重大災害或政府政策 的影響,可探討人為的政策與大自然的災害,影響環境的程度及多寡。

三、測量外業流程更為順暢

時常在外業時,困擾測量員最大的因素即為實地現場障礙物,其中最常見的即是地表原始植被過多,導致無法施測,進而延期甚至是撤回,對於整體運作而言實在是一大常見困擾。因而希望可以 NDVI 的展現,在外業前先行了解該地實地綠覆蓋狀況,先行請申請人進行相關處置。

貳、研究方法與資料分析

2.1 研究方式

使用 USGS 開放資料下載近紅外光波段的衛星影像「Landsat 8 衛星影像」作為本次 NDVI 分析的對象。計算大坑地區常態化差異植被指數(NDVI),分析綠覆率的數值,研究流程如下圖 1 所示,衛星影像的空間解析度為 30 公尺,並採用 ArcGIS 分析綠覆率成果。

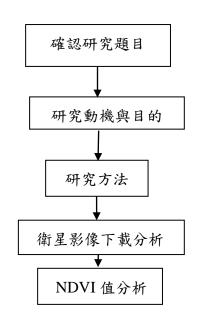


圖 1、研究流程圖

2.2 研究範圍

竹山鎮位於南投縣西南端,阿里山北稜延伸形成,呈南高北低東山西平,面積 247 平方公里。地理上大部分為丘陵山嶺,東西長約 18.5 公里,南北長約 23 公里。

全鎮的最高點是 2288 公尺的鹿屈山,最低位置是海拔高度僅 106 公尺的濁水 溪香員腳沙洲。行政區域共劃分成二十八個里、四百七十個鄰,分別為:富州、 中央、社寮、山崇、延平、延正、延山、延祥、延和、竹山、中正、中山、雲林、 竹圍、桂林、下坪、中和、中崎、德興、福興、瑞竹、桶頭、坪頂 、鯉魚、秀林、 田子、大鞍。

一、地形

竹山鎮幅員廣闊,標高介於 100~2300 公尺之間,地形較為複雜,概括來說,可分為屬於中央山脈的山地及屬於西海岸平原的平地兩部分。 地形上屬於東高西低、南高北低的地形。 竹山丘稜佔據竹山鎮東南半壁,西側以濁水溪支流的清水溪為界,與斗六丘稜的觸口切割台地為鄰。境內除西部為狹長台地平原外,大部分屬竹山丘陵,地勢由東南向西北漸次遞減。丘陵由於溪流切割成河階地形,東北部是濁水溪南岸的沖積平原,屬於濁水溪的老河階,清水溪左側是斗六丘陵北端的觸口山切割台地。

竹山鎮內有下列地形:鳳凰山山脈、竹山丘陵、坪頂埔臺地、觸口臺地、濁 水溪河谷平原、清水河谷平原。

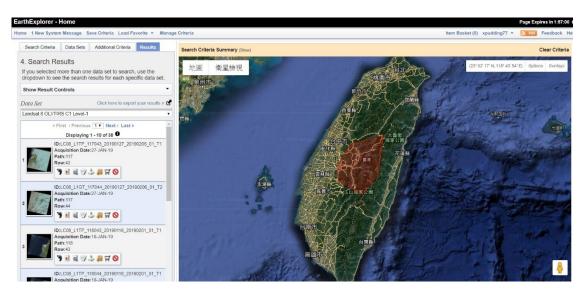
二、氣候水文

氣候屬於亞熱帶氣候,年均溫約為 22.3 °C年雨量約為 2693.2 公釐,雨量集中於 4-9 月間,冬季乾旱,有缺水的現象。受地形影響各地溫差大,於農業上發展為不同氣候類型的農作物。

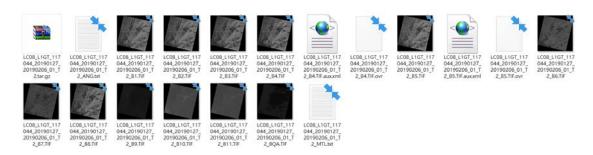
二、植被

鐵杉、雲杉林帶分佈於海拔右 2,500~3,100 公尺,為針葉樹林;櫟林帶則分佈在海拔 1,500-2,500 公尺處,為山地常綠闊葉林,常形成紅檜林或針葉林,台灣赤楊或合灣二葉松純林;楠櫧林帶則可分佈於海拔 500~1,500 公尺間,為山地下層常綠闊葉林,包括櫧櫟類,樟科的楠木類為主;常綠闊葉林分佈於海拔 500 公尺以下,為最常見的雜木林帶。

2.3 研究方法

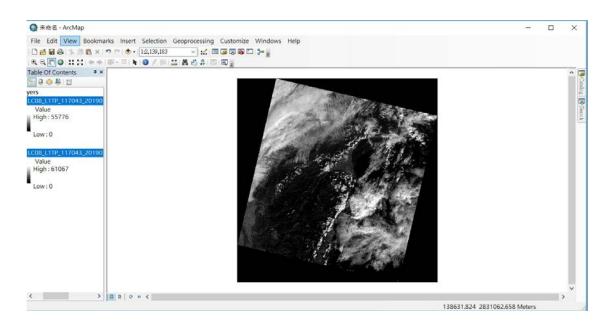

以下為本專題中,USGS 之 Landsat 8 衛星影像資料處理方式及 NDVI 分析方法,步驟如下:

(1) 資料蒐集


下載 USGS 開放平台資料之 Landsat 8 衛星影像資料作為本次專題分析資料。 資料來源與型式如下圖一、二、三所示:

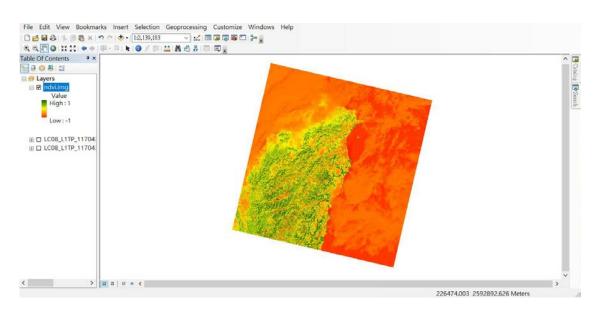
圖一、USGS 平台

圖二、107年 Landsat 8 衛星影像


圖三、107年 Landsat 8衛星影像檔案形式

(2) 資料篩選

由於本次之分析為了解現況即可及時了階目前最新之現實地貌情況,考量到其他相關資料取得難易度,故取用2018年中(7月)之圖資,以作後續分析。


(3) 資料處理與匯入 ArcMap

最初之Landsat 8 衛星影像資料,有多種波段類型,取其中的 NIR 與 R 波(紅光波段及近紅外光波段)以利於接下來的 NDVI 植被方面的分析。

圖四、NIR與R波(紅光波段及近紅外光波段)衛星影像圖

使用 ARCMAP 的 calculate 功能,載其中帶入參數和公式 $NDVI = \frac{NIR-R}{NIR+R}$,得出該張衛星影像之 NDVI 圖,並調整其顯示色調。

圖四、經 calculate 功能的初步 NDVI 圖

由於衛星影像圖之單張圖幅甚大,已超出本次要分析範圍,難以聚焦找出重點及在資料相關級距將使成果難以呈現,故取出本次探討重心,竹山的部分。

其步驟如下:下載鄉鎮市區 WGS84 圖資和各直轄市、縣市 WGS84 圖資,載入 ARCMAP後,在內容資料處取出竹山圖資部分,並使用剪取功能將竹山部分圖資單獨存出。

圖五、經剪取後得出的竹山鎮圖資

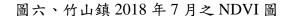
使用 clip 功能中的網格擷取向量圖資功能,先將 NDVI 圖和竹山鎮圖資轉換至相同坐標系,避免產生錯誤的判讀,將之疊合,剪出竹山鎮區域之 NDVI 圖。

(4) 成果展示

由於範圍縮小,設定顯示的色階、NDVI值之尺度區間等,以呈現出最終之

竹山鎮 NDVI 圖。


參、 研究結果


主要以地理資訊系統(GIS)分析成果,並進行分析。

(1) NDVI 值展現與分析

NDVI(Normalized Difference Vegetation Index)為常態化差值植生指標,本次報告的NDVI值計算採用區域平均值,計算綠覆率的時間點為2018年的7月,將紅光波段及近紅外光波段之衛星影像下載後,進行波段的網格數值的運算,公式如下式:

$$NDVI = \frac{NIR-R}{NIR+R}$$
 $\sharp(1)$

圖七、竹山鎮衛星影像圖

經過 NDVI 值的計算得到的成果為整體地區平均值為 0.09, 越綠之地區林木越茂密, 越紅反之(可更改設定調整), 可看出大致和都市發展走向相符, 而山林中則有可能為茶園果樹或地勢較高植被較為稀疏區域。

較不密值區域竹山鎮近年的各項開發,如在山區種植茶葉等,大坑地區的不

斷開發也是影響大坑地區 NDVI 的重要因素,期望政府能在開發的過程,適度兼 顧環境的保育。

(2) 相關計算分析

NDVI為取其中個波段衛星影像圖之R和NIR波段,進行植被方面的茂密度計算,若採用不同波段則可針對不同客體進行分析,如NDBI及NDWI分別針對人工建物和水體等地貌覆蓋面積之變遷偵測,如本專題操作流程,對於他向領域也能有初步分析。

(3) 測量外業精度

本次報告在USGS網站上下載Landsat8衛星影像作為本次NDVI分析的對象, 空間解析度為30公尺,因此若要進行較細微之分辨則較難達成,難及外業測量所 需精度。

但若有航空影像圖等解析度較高的 R 和 NIR 波段資料來源,則結果可更為精細,結果可到達所期望的外業前先行調查工作, 甚至是不用出門就可觀察盜墾盜採砂石和植被變化等費工之事。

肆、 結果及未來展望

從初步對於 Landsat8 衛星影像進行 NDVI (Normalized Difference Vegetation Index 標準化植被指數、常態化差值植生指標)指標分析,所得到的指標反應獲得良好結果,初步反應即時綠覆蓋實際狀況,且衛星影像更新速度快,可作為長期調查的一項指標。此外,也可取不同衛星不同在距所產生的進紅外光和紅光波段影像,生成各式不同解析度的成果。

若從多時期影像分類結果進行影像相減,則可得知不同時期地貌變遷情形, 進而計算不同地物在不同時間點下之面積變化情形,對於都市發展事鎮規畫也有 一定參考價值。

有鑑於平時測量外業時,時常會遇見到現地發現植被或障礙物過多導致無法順利施測,導致測量人員時間成本及人力無端浪費,鄰地關係人甚至是申請人可能也會白跑一趟,在另行延後排定,更甚者,也有民眾知情後仍執意施測等。因

此,從測量外業進行考量,若結合精度較高之影像圖檔,則可進行較細微準確的 判讀,符合外業所需之精度,產生個高解析度的 NDVI,達成先行了解該筆地號土 地植被覆蓋多寡,是否須事前清除或是延期的預先參考依據,也可作為給民眾參 考、說服的工具,減少外業時間的浪費並提高效率。

伍、參考文獻

1. USGS: https://www.usgs.gov/

2. 竹山鎮簡介: http://nrch.culture.tw/twpedia.aspx?id=4059

3. 竹山鎮簡介:

https://zh.wikipedia.org/zh-tw/%E7%AB%B9%E5%B1%B1%E9%8E%AE_(%E5%8F%B0%E7%81%A3)

4.ARCGIS 操作:

 $https://www.youtube.com/watch?v=7WNUsBHOJRw\&feature=share\&fbclid=IwAR3o\\ qF0ff-rwLZNMf6NOhXGMldW8oYTIOxomIxmFo3KCiSoiK2aLx6NO8sA$