南投縣政府 110 年度研究報告

研究創新及工作簡化事項
- 以 E-GNSS 即時動態定位自動座標系統協助辦理數值區
土地複丈作業

服務單位: 南投縣埔里地政事務所

研究人員:張韶華

中華民國 110 年 02 月 04 日

目錄

一、 研究動機與目的	2
二、 文獻回顧	4
(一) VBS-RTK 即時動態定位技術	4
(二) e-GNSS 自動座標轉換	6
三、 研究流程	8
(一)流程概述	8
(二) e-GNSS 即時動態定位自動座標系統實務操作方法	9
四、 成果分析	13
五、 結論與未來展望	16
六、 參考文獻	18

一、 研究動機與目的

地政機關的存在目的是為做好土地管理,除了使政府能夠有效地取得國土資訊,以有效地進行公共事務政策的擬定與推動,更是要確保人民私有財產權的權益,為提供一般民眾自由處分其不動產的服務,便於各地區設立地政事務所,為民服務。而地政事務所受理民眾申請土地複丈,包括土地鑑界、分割等業務,而這些業務皆須藉由土地實地測量來完成,故在測量業務成果的精確度,便會直接地影響到民眾土地財產的權益,因而確保測量業務的品質是各個地政單位要務之一。

現今已辦理地籍圖重測之土地地籍資料,並非如同過去以圖 紙方式保存,而是以數值化的方式加以管理,在這些數值化之重 測區辦理鑑界、分割等複文作業時,便需依據加密控制點、圖根 點為基準,以辦理測量作業。然圖根點之保存實屬不易,容易因 年久損毀、工程等因素而導致圖根點遺失,圖根點維護與補建的 工作除了需要相當的人力及預算,更要跨部門的合作方可達成; 然本所近年來因人力吃緊、道路工程頻繁等因素,使本所轄區內 之早期圖根點多已遺失,在辦理這些數值區的土地複丈作業工作 時便難以順利進行。 隨著科技的發展,衛星定位的相關技術不斷提升,內政部國 土測繪中心將網際網路及無線數據通訊傳輸技術結合,推出 e-GNSS 即時動態定位系統,提供公分級精度的即時動態定位服務, 此外還同時提供即時三維座標轉換服務,讓使用者在外業測量現 場可立即將 e-GNSS 系統測量成果轉換至地籍測量所規定之法定 坐標系統,如 TWD 97、TWD 97[2010];對於多以遺失的圖根點地 區來說,若在辦理複丈作業時以此方法來進行測量,便可解決圖 根點短缺的問題,大大提升外業時的效率。

本所管轄範圍內之數值區地籍圖之座標系統大多為TWD 97, 然TWD 97是於1997年建置,距今長達二十餘年的時間,台灣因 地震頻繁使全台各地區內的點位產生不同方向、大小的偏移,使 這些點位在使用上,可能無法符合測量精度之需求,因此基於上 述這些因素,透過 e-GNSS 即時三維座標轉換服務之測量成果直 接使用於土地複丈的可行性,是仍然需要再加以檢視地,故 e-GNSS 即時動態定位系統提供之自動座標轉換的精確度,是本研 究所要進行探討的重點,當精確度符合一般辦理土地複丈之需求, 便可以有效提升本所辦理數值區外業測量的精度與效率。

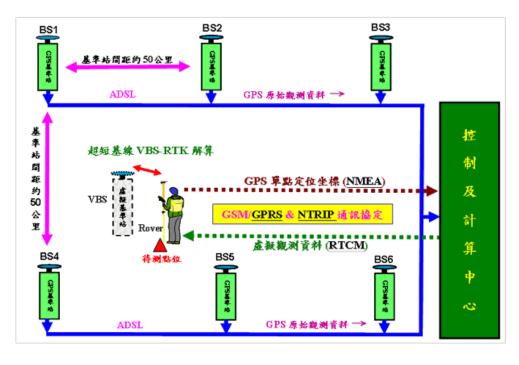
二、 文獻回顧

(一) VBS-RTK 即時動態定位技術

傳統的即時動態定位技術(Real-Time Kinematic, RTK) 是利用差分定位的方式,來快速求得移動站座標之定位技術, 具有操作容易、測量效率高及精度可達公分等級等優點,然 而 RTK 在進行使用移動站的同時,還需要架設基準站方可進 行 RTK 的應用,因此至少人力需要兩人以上,同時還需要兩 台衛星接收器,且基準站與移動站之間是透過無線進行通訊, 而通信訊號會因距離而衰減,使移動站的作業範圍受到限制, 故對於辦理一般複丈作業而言,此測量方法在人力、儀器缺 乏之地政事務所實務上的可行性是相對較低的。

VBS-RTK 即時動態定位技術是 e-GNSS 即時動態定位系統之核心定位技術,透過網路技術所建構的虛擬基準站取代了傳統 RTK 的實體基準站,大大降低了使用門檻,而 VBS-RTK 包含了以下三大要素:

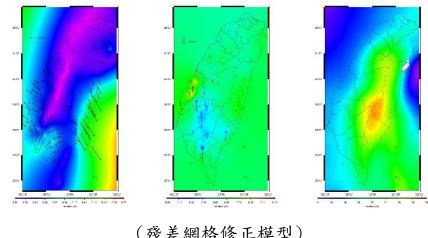
1、衛星定位基準網


內政部國土測繪中心於全台各地建置衛星定位基準 站,自93年起開始建置,目前包含離島總共有204處衛 星基準站,基準站會不斷地接收衛星訊號,建立基準網觀 測資料庫,並同時進行基準站之網形平差計算。

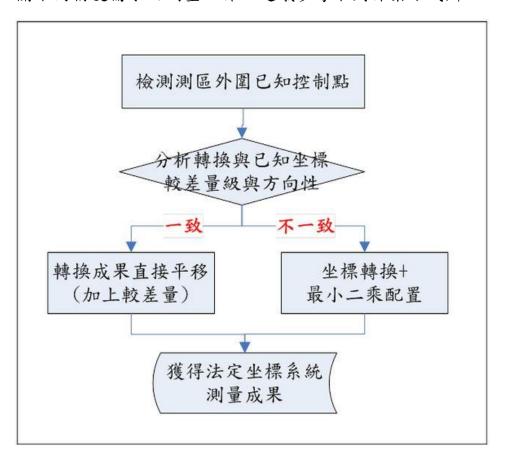
2、控制及計算中心

控制及計算中心彙整計算各基準站連續觀測資料及 精確坐標,建立區域性誤差修正資料庫。

3、移動站與虛擬基準站


移動站利用無線數據通訊傳輸技術將衛星定位接後,由控制及計算中心依移動站位置坐標進行系統誤差內插計算,並結合最近的基準站實際觀測資料組成 VBS 虛擬觀測資料後,以 RTCM 格式回傳至移動站,於移動站附近建置虛擬基準站,讓移動站進行「超短基線」 RTK 定位解算,快速得到移動站座標。

(二) e-GNSS 自動座標轉換


e-GNSS 即時動態定位系統因需處理各個基準站以及使用者虛擬基準站資料,須維持個基準站之間的相對位置之正確性以及整體座標系統之一致性,且臺灣地區因位處於地殼變動劇烈地帶,區域性之地表位移量各地均有明顯差異,也因此造成各基準站間坐標精度已不敷進行相關資料解算,國土測繪中心乃自行定義1套以時間為函數之e-GNSS動態坐標系統,來做為進行即時動態定位之坐標基準平台,國土測繪中心整合國內之衛星連續觀測站的接收資料,並依據TWD97[2010]座標框架定義來約制,解算出個基準站 e-GNSS[2019]精密座標(簡稱e-GNSS[2019])。

由上述可知,e-GNSS 座標系統與法定座標系統之間會有 所差異,e-GNSS 即時動態定位之測量成果無法於直接於數值 區使用;而國土測繪中心為提供使用者更便利之服務,依據使 用者的 e-GNSS 觀測成果,分別將使用者所在位置之座標轉換 參數、殘差網格修正模型與網格內插計算方法傳送給使用者, 讓使用者可以即時將 e-GNSS 系統成果轉換至法定座標系統, 如 TWD97、TWD97[2010],大幅地提升測量工作效率與品質。

(殘差網格修正模型)

而在進行自動座標轉換服務時,應當先檢視轉換成果精 度是否符合測量工作精度的需求。為確保測量成果品質,有 關不同精度需求之測量工作,建議參考下列作業方式辦理:

三、 研究流程

(一) 流程概述

本研究將透過內政部國土測繪中心所提供的 e-GNSS 即時動態定位系統,並開啟即時三維座標轉換服務,對本所轄區內之加密控制點進行測量,並將測量成果與公告之法定座標系統進行檢核,最後依據統計檢定之單一樣本 t 檢定的方法來判斷 e-GNSS 即時三維座標轉換服務之測量成果直接使用於地籍測量的可行性。

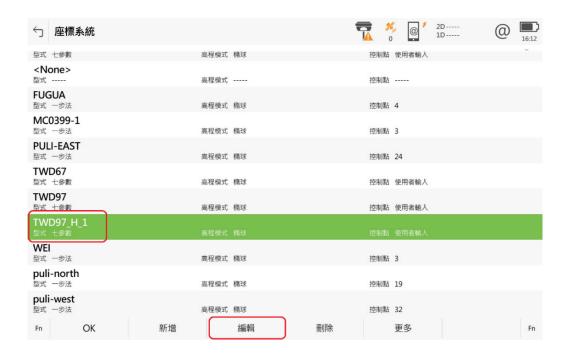
(二) e-GNSS 即時動態定位自動座標系統實務操作方法 本研究透過 Leica CS35 控制器、GS18 衛星接收儀進行 e-GNSS 即時動態定位之實務操作。


1、設定設置點,點選由上角手機圖示後,點選設置點按鈕。

2、點選 NTRIP 右方欄位,以進入設置點選單。

← 網路埠連接	7 % @ 2D (
網路連接埠	CS NET1
所使用的伺服器	NLSC >
NTRIP 設置點	GNSS_TWD97
Press 'Source' to get a list of mountpoints	

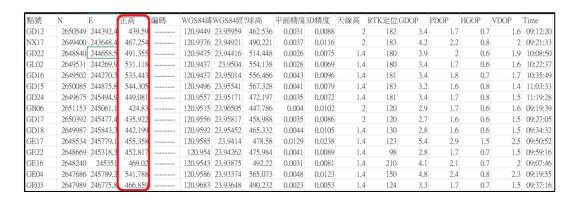
3、依據作業之座標系統,選擇所要使用的設置點(TTG為雙星系統,GNSS為全星系系統)。



4、確認座標系統已自動變更為 TWD97_H_1。

5、若為首次使用該座標系統,須設定投影參數。

點選 TWD97_H_1 後,進入座標系統選單,選擇 TWD97_H_1,按下下方編輯按鈕。


6、點選投影旁之按鈕。

7、在投影選單中選擇 TM2,按下 OK 即完成設定。

8、當開啟自動座標系統進行測量時,觀測成果便會有正高的 資料出現。

四、 成果分析

(一) 觀測成果

	觀測座標		法定座標		較差		
點位	N	Е	N	Е	N	Е	距離
GA01	2653184.773	241913.606	2653184.760	241913.635	0.013	-0.029	0.032
GA06	2652733. 969	242657.631	2652733. 914	242657.645	0.055	-0.014	0.057
GA08	2652560. 251	243096.363	2652560. 263	243096.371	-0.012	-0.008	0.015
GA13	2651733. 764	244544. 254	2651733. 761	244544. 236	0.003	0.018	0.019
GA15	2653529. 427	244437. 228	2653529.419	244437. 215	0.008	0.013	0.015
GA22	2652802.853	243489.115	2652802.854	243489. 138	-0.001	-0.023	0.023
GA25	2652525. 812	245590. 421	2652525.830	245590. 424	-0.018	-0.003	0.018
GA27	2653567.008	245764.099	2653567.007	245764. 092	0.001	0.007	0.007
GA29	2653017.750	246283. 395	2653017.750	246283. 390	0.000	0.004	0.005
GA30	2652626. 974	246325.446	2652626.979	246325. 441	-0.005	0.005	0.007
GA54	2649270. 206	248659.773	2649270. 211	248659.754	-0.005	0.019	0.020
GA57	2648836.374	247861.418	2648836.375	247861.389	-0.001	0.029	0.029
GA59	2649687. 789	247541.659	2649687. 784	247541.618	0.005	0.041	0.042
GA60	2653368. 480	247249. 821	2653368. 458	247249. 812	0.021	0.009	0.023
GA85	2648795.460	249294. 081	2648795. 461	249294. 075	-0.001	0.006	0.006
GB06	2651153. 487	245061.087	2651153. 489	245061.076	-0.002	0.011	0.012
GC01	2653247. 622	251156. 589	2653247.607	251156. 561	0.015	0.029	0.032
GC02	2653431.036	249914. 021	2653431.033	249914.010	0.003	0.011	0.011
GC04	2653667.554	248505.779	2653667. 547	248505. 761	0.007	0.019	0.020
GC05	2654114.302	249063.816	2654114. 298	249063.800	0.004	0.015	0.016
GC07	2655074.075	248828.030	2655074.113	248828. 031	-0.038	-0.001	0.038
GC09	2655178.856	247164. 749	2655178.853	247164.750	0.002	-0.001	0.003
GC12	2655653. 795	245430. 273	2655653. 790	245430. 298	0.005	-0.025	0.026
GC15	2654378. 234	246611.968	2654378. 248	246611.970	-0.014	-0.002	0.014
GC26	2653885. 957	247088.702	2653885. 953	247088.690	0.004	0.012	0.013
GD06	2651609.773	242520. 784	2651609.761	242520.750	0.012	0.033	0.036
GD07	2650818.770	242496. 241	2650818.693	242496. 172	0.077	0.069	0.103
GD08	2650698.896	242793.830	2650698.895	242793.816	0.001	0.014	0.014
GD10	2651191.023	243469.690	2651191.035	243469.678	-0.012	0.012	0.017
GD11	2651252.860	244496.444	2651252. 875	244496. 427	-0.015	0.017	0.023
GD12	2650548. 950	244392.367	2650548.961	244392. 333	-0.011	0.034	0.036

GD16	2649502. 235	244270. 268	2649502. 261	244270. 251	-0.026	0.017	0.031
GD17	2650391.754	245477. 431	2650391.749	245477. 424	0.005	0.007	0.009
GD18	2649986. 842	245843. 334	2649986.854	245843. 300	-0.012	0.034	0.036
GD22	2648840.140	244658. 499	2648840.138	244658.480	0.002	0.019	0.019
GD24	2649675. 361	245494. 939	2649675.347	245494. 928	0.013	0.011	0.018
GD26	2650113. 213	243259.892	2650113. 241	243259.828	-0.028	0.064	0.070
GD27	2652546.150	241598.666	2652546.136	241598.644	0.014	0.022	0.026
GD31	2650552. 801	244029.045	2650552. 787	244029.054	0.014	-0.009	0.017
GE03	2647988. 785	246775. 786	2647988.779	246775. 771	0.006	0.015	0.016
GE04	2647685. 731	245789. 186	2647685. 728	245789. 183	0.003	0.003	0.004
GE08	2650172.081	247341.607	2650172.068	247341.599	0.013	0.008	0.015
GE16	2648240.068	245351.029	2648240.067	245350.997	0.001	0.032	0.032
GE17	2648534. 215	245779. 085	2648534. 208	245779.037	0.007	0.048	0.048
GE18	2648553. 239	246115.611	2648553. 242	246115. 584	-0.003	0.027	0.027
GE22	2648668.740	245318. 269	2648668.752	245318. 245	-0.012	0.024	0.027
GE23	2648909.462	247417. 621	2648909. 459	247417. 622	0.003	-0.001	0.003
GE24	2649012.615	246711.791	2649012.656	246711.680	-0.041	0.111	0.119
GH01	2648419. 480	248016. 167	2648419. 491	248016.142	-0.011	0.025	0.027
GH04	2647107.565	248791.571	2647107.564	248791.549	0.001	0.022	0.022
GH05	2646941.955	249172. 313	2646941.963	249172. 308	-0.008	0.005	0.009
GH06	2648545. 492	248609.691	2648545. 522	248609.684	-0.030	0.006	0.031
GH11	2647177. 885	249417. 014	2647177.874	249417. 009	0.011	0.005	0.012
GH13	2646767. 562	250550.843	2646767. 589	250550.840	-0.027	0.003	0.027
GH23	2645568. 492	250518. 921	2645568. 496	250518.904	-0.004	0.017	0.018
GH24	2645162.004	250809.317	2645161.940	250809.358	0.064	-0.041	0.075
GH27	2648092.639	247567. 963	2648092.620	247567. 927	0.019	0.036	0.041
GH34	2647706. 189	248190.082	2647706. 188	248190.013	0.001	0.069	0.069
GJ02	2655615. 733	245708. 295	2655615. 740	245708.317	-0.007	-0.022	0.023
GJ03	2656014.995	245503.600	2656014.995	$245503.56\overline{2}$	0.000	0.038	0.038
GJ04	2656540.384	$245270.42\overline{2}$	2656540.381	$245270.39\overline{5}$	0.003	0.027	0.027
GJ05	2654894.557	245515. 648	2654894.553	245515.659	0.004	-0.011	0.012
GJ06	2655606.308	246137. 359	2655606. 298	246137. 337	0.010	0.022	0.024
GJ08	2656402.734	$245971.14\overline{5}$	2656402.725	$245971.12\overline{0}$	0.009	0.025	0.026
GJ11	2656110. 928	245260. 230	2656110.907	245260. 222	0.021	0.008	0.023
GJ12	2656406.778	245454. 495	2656406.793	245454. 486	-0. 015	0.009	0.017
NX03	2651748. 182	242813.570	2651748. 182	242813. 561	0.000	0.009	0.009
NX08	2654406.879	244486. 250	2654406.889	244486. 261	-0.010	-0.011	0.015

NX09	2652340.484	243677. 498	2652340.480	243677.486	0.004	0.012	0.013
NX17	2649400.075	243648.398	2649400.073	243648.370	0.002	0.028	0.028
NX32	2649602. 201	248725.842	2649602.199	248725.826	0.002	0.016	0.016
NX35	2654338. 522	247256.776	2654338.507	247256.770	0.014	0.005	0.015
NX36	2646934. 449	249636.717	2646934. 452	249636. 720	-0.003	-0.003	0.004
NX39	2653139. 293	241013. 425	2653139. 293	241013.405	0.000	0.020	0.020
NY84	2655426. 977	247456. 764	2655426. 966	247456. 741	0.011	0.023	0.026

(二) 成果分析

本研究採用單一樣本 t 檢定,來檢視由 e-GNSS 即時三維 座標轉換服務提供之轉換成果是否符合一般土地複丈使用,而 依一般數值區之精度要求,假設其觀測成果與法定座標之距離 較差在 3 公分以下時,即可認為該成果符合一般土地複丈使用 之要求。

而根據上述條件,並且令在 95%信心水準下,單一樣本 t 檢定之研究假說如下:

 $H_0 : u > 3$

 $H_a: u \leq 3$

樣本數 n=76

距離較差平均 $\Delta d = 2.6 (cm)$

距離較標準差 s=2.0 (cm)

$$t = \frac{\Delta d - u}{s_{\Delta d}} = \frac{2.6 - 3}{\frac{2.0}{\sqrt{76}}} = -1.94 < -1.67 = t(0.5,75)$$

故否定 H_0 ,因此距離較差小於等於3公分,即該成果符合一般土地複丈使用之要求。

五、 結論與未來展望

在本研究當中,期望透過國土測繪中心 e-GNSS 即時動態定位系統,並啟用即時三維座標轉換服務,將 e-GNSS 觀測成果即時傳換成法定座標系統,如 TWD97、TWD97[2010],希望解決在本所轄區內辦理數值區複丈作業時,若遇到圖根點保存不良之區域便室礙難行的狀況,並提升複丈效率。

基於上述實地測量並對其觀測量加以檢核、分析之成果,本 研究列出以下結論:

- 1、在進行自動座標設定的過程中,需注意是否有接收到自動 座標系統,確定工作檔之座標系統已自動更改成 TWD97 H 1。
- 2、以e-GNSS即時動態定位系統,並搭配即時三維座標轉換服務,可快速取得法定座標之觀測成果,且該轉換成果之精度在3cm以內,對於一般複丈測量已足夠使用。
- 3、在進行複丈作業時,若遇到障礙物導致透空度降低,衛星觀測成果無法收斂,可於周遭附近透空度較好的地方建置

補點,以e-GNSS 觀測補點座標後以全站儀輔助施測,以加速工作標率。

4、未來在辦理圖解區時,若該區域位於地籍圖重測之數值區 問維,可透過該方式來進行現況測量,便可整合該圖解區 地段與數值區地段之地籍圖,以提升複丈成果之一致性。

六、 參考文獻

- 劉冠岳、王建得、黃國良、何定遠、鄭彩棠(2014)。VBS-RTK 應用於界址測量之探討。地籍測量:中華民國地籍測量學會 會刊,33卷2期, P21 - 38。
- e-GNSS 即時動態定位系統入口網站。 https://egnss.nlsc.gov.tw/HotNews.aspx
- Student's t-test https://en.wikipedia.org/wiki/Student%27s_t-test
- 星將儀器。<u>http://www.highrise.com.tw/</u>